Rectifier circuits | Anna university questions papers projects for EEE,ECE,IT,MECHANICAL,MBA,MCA Anna university questions papers projects for EEE,ECE,IT,MECHANICAL,MBA,MCA: Rectifier circuits Bank Exam question paper, GATE Papers,Combined Defence Service Examination papers ,TANCET,BSNL JTO,ISRO,EBOOKS,DRDO ,BARC, , NTPC ,BHEL ,BEL ,HAL,Anna University Papers,ECE , EEE , CSE , IT , Mech , BIOMEDICAL , Textile , MBA , MCA , Anna University Question Bank , Anna University Syllabus , Anna University 'Q' Papers , Gate Papers , 8051, AVR, 8051 projects, free 8051 microcontroller projects, AVR projects, AVR tutorial, AVR microcontroller projects, circuits, hobby electronics, microcontroller based projects, microcontroller projects, final year projects, electronic projects, electronics projects, circuit diagrams, pin diagram, pin description, interfacing with AT89C51, 8051 tutorials, embedded projects, serial port, sensor, Electronic Components, Electronic Circuits, circuits for hobbyist, electronic schematics, DIY projects, breadboard circuits, at89c51, 8051 code, advanced circuits, hobby projects, circuit ideas, embedded system, embedded C, microcontroller programming in C, LCD interfacing, ADC interfacing, circuit components, hobby circuits, seven segment display, 89c51 projects, circuit description, major projects, minor projects, projects for circuit branches, interrupt, 8051 programming, RS232, 8 bit microcontroller,Microcontroller Tutorials, PIC Tutorial, 8051 Microcontroller Tutorial Resource, Connect to the PIC, PIC Tutorials, Micro Controller Tutorials, PIC Micro controller Tutorial Resource, DALLAS 80C320, DS80C320, Connect to the PIC, PIC Tutorials, Dallas DS80C320, 8051 Introduction, Types of Memory, Special Function Registers, Basic Registers, Addressing Modes, Program Flow, Low Level Information, 8051 Timers, 8051 Serial Port Operations, 8051 Interrupts, Additional Features of 8052, 8052 Instruction Set, Computer Science Seminar Topics, Mechanical Engineering Seminar Topics,Electrical Seminar Topics,Electronics Seminar Topics,Seminar Abstract And Report Downloads,High-Speed Architecture, New Instruction Speed, Variable Length MOVX Instruction, Timer Considerations, Dual Data Pointer, Watchdog Kicking, The Watchdog Watchdog Interrupt, Watchdog System Resets, Power Failure Functions, Power Failure Reset, Power Failure Interrupt, Secondary Serial Port, Timed Access Protection, PIC16F877A Tutorial, Introduction to the PIC16F877A, How to hook up the PIC so it will run?, What do the pins mean?, How to program the PIC?, Miscellaneous Advice, LED Blinker, Photoresistor Input, Analog Input (Photoresistor, Sonar sensor, IR sensor, Digital Input (Switches), Output messages to computer screen, Servo Motor Output, DC Motor Output,Gate sample paper with solution , Engineering E-Books , Free ebook websites , Final Year Projects , Placement papers,anna university previous year question bank, previous year question paper,model question paper, two mark question paper,sex,adult,results,atmel humidity Assembly Language code, Digital Clock Employing Memory Mapping, Humidity Sensing, Microcontroller51,control solid state relays, decoded 74ls138, latech 73ls373, port expander, Solid State Relays,urn ON, turn OFF, Relay Driver, back EMF, holding, current, pullup, resistor, coil, BC547, ULN2003, ULN2803, npn, transistor, microcontroller, Technology, circuit,bharathidasan university,university,thanjavur,madurai,coimbatore,chennai,adult,porn,sastra,sastra university, placement and training cell,java,j2ee,ajax,c,c++,oracle,COMPUTER SCIENCE,embedded, embedded systems, j2ee, dotnet, j2me, dot net, jsp, vb, c#, c, c sharp, computer science, cse, information technology, it, Electrical, Electronics, communication,SURVEY,ONLINE JOB,PAY TO CLICK,SEBOSA, ece, eee, academic, college, instrumentation, control, control systems, best ,project centers, project centres, company, companies, software, telecommunication, telecom, networking, matlab, robotics, Artificial intelligence, automation, cloud computing, cryptography, data mining, dsp, database, digital, image processing, fuzzy logic, gsm, gps, gprs, mobile computing, networks, network security, php, power, systems, vlsi, hardware, web services, wireless, rf, rfid, microcontroller, ns2, 2010, titles, list, download, latest, free, advanced, low cost, placement, zigbee, Chennai, india, uk, SOFTWARE ENGINEERING, APPLIED ELECTRONICS, VLSI Design, M.E,EMBEDDED SYSTEMS, COMMUNICATION SYSTEMS,Memory Organization, Microcontroller to LCD, moving message display using 8051 microcontroller, MOVING MESSAGE DISPLAY USING ATMEL 89C51, PIN Configuration, Programming Aspects, POWER ELECTRONICS, 89c51, 89s51 moving message display board, microcontroller 8051,8051, AVR, 8051 projects, 8051 microcontroller projects, AVR projects, AVR tutorial, AVR microcontroller projects, electronics projects, free electronic circuits, circuit diagrams, circuits, schematics, hobby electronic projects, electronic projects, hobby electronic circuit diagram, final year projects, embedded projects, technical articles. Interfacing microcontroller 8051 with peripherals like ADC, LCD, EEPROM,solenoid valve atmel dc control triac,dimmer bt138,uln2003 microcontroleur interfacing a microprocessor to a power thyristor microcontrol based level mesurement 89c51 as pwm controller,at89c2051 sine wave pwm,8051 lift, circuit design for a elevator, Elevator Lift control for three stories with microcontroller 8051, microcontroller based lift controller for three stories, three stories lift,ericsson at command microcontroller, GSM/ EDGE Modem in PCI Interface, Interface of mobile phone with micro-controller, Supporting AT commands,embedded projects,8051,pic,arm,pic16f877a,qualifity,best project in thanjavur,relay design,product manufuring,dvd,vcd,service,free training,electrical and electronic circuits,pcb board design,help of embedded,earn money with embedded,part time job,home based job,vacancy,ieee transaction,optimization,website design,university, Chapter 2 Liquid Crystal Display, Character Generator RAM, DDRAM or CGRAM, Display on or off control, LCD, microcontroller interface with LCD, PIN Configuration, Pressure monitoring with microcontroller 8051, Pressure sensing and controlling, Pressure Sensing System, Programmable Peripheral Interface, RS-232 serial communication,diploma in embedded,matlab in thanjavur, seo,site design @2900 onwards, 8255 and RS232, 89s51 LCD display LM 35 ADC0804 measurment, construction of a pressure sensing system using 8051, designed pressure sensor and transducer,microcontroller based heart rate meter,8051 pin diagram,invention heart rate meter,heart meter watch,heart beat monitor project,8051,AVR,8051 projects,free 8051 microcontroller projects,AVR projects,AVR tutorial,AVR microcontroller projects,circuits,hobby electronics,microcontroller based projects,microcontroller projects,final year projects,electronic projects,electronics projects,circuit diagrams,pin diagram,pin description,interfacing with AT89C51,8051 tutorials,embedded projects,serial port,sensor,Electronic Components,Electronic Circuits,circuits for hobbyist,electronic schematics,DIY projects,breadboard circuits,at89c51,8051 code,advanced circuits,hobby projects,circuit ideas,embedded system,embedded C,microcontroller programming in C,LCD interfacing,ADC interfacing,circuit components,hobby circuits,seven segment display,89c51 projects,circuit description,major projects,minor projects,projects for circuit branches,interrupt,8051 programming,RS232,8 bit microcontroller,microcontroller based heart beat monitor,8051 isp programmer,heartbeat monitor and display on LCD,heart beat rate monitor with sensor,training heart rate monitor with comaprators ans sensor,8051 microcontroller application,optocoupler based sensor of runner heart rate monitor,how to measure heart beat, calculate heartbeat just in one second,8051 rtos,limitations of heart rate monitors, quick display of heart monitor,advantages of electronic medical records,electronic medical billing,used electronic test equipment,electronic document management solution,fetal heart rate monitor,wrist heart rate monitor,avr 8051,baby heart monitor,heart beat counter using microcontroller 8051, block diagram for ir led and ldr based heartbeat monitor with display on computer, MICROCONTROLLER AT89C2051 BASED HEART BEAT MONITOR (PULSE RATE wth assembly code),ir led and ldr based heartbeat monitor with display on computer,wireless biomedical monitoring system using 89S52 microcontroller,wireless biomedical monitoring system using 89S52 microcontroller,8051microcontroller based heart beat monitor,heart pulse system project,very cheap cost in india,lm35,temperature sensor,heart beat sensor,technology,solutions,sastra university,data base design,speed ,innovative centre,home security system model design, water level indicator for home,COMPUTER SCIENCE, SOFTWARE ENGINEERING, APPLIED ELECTRONICS, VLSI Design,IEEE Project center, IEEE 2010 Projects in Tanjore, trichy, Kumbakonam, Pudukkottai, Ariyalur, Pattukkottai, Best IEEE Projects, final year projects, Project Center in Trichy, Project Company in thanjavur, Project training @ tanjore, Free 8051 Microcontroller projects,8052 projects,microcontroller,projects, Datasheers,circuit diagram,Microcontroller,8051,AVR,8085 Microprocessor,BASCOM,projects,tutorials,codes,Libraries,interfacing examples,embedded projects,serial port,infrared remote controls,rf remote controls,home automation,Intel 8051 microcontroller,electronic projects,embedded systems,control systems,computers,technical books,software,assembly language,programming intels 8051,serial communications,rs232,Electronics Projects,Books,Home Automation,Computer Software,Assemblers,Compilers,applications Programming,Embedded Systems Design,8052,AT89C2051,robotics applications,visualbasic, Microsoft Visual Basic,system, based, solar, control, intelligent, motor, controller, vehicle, monitoring, pwm, detection, home, temperature, tracking, alert, blind, alcohol, automated, automatic, close,Robotics,Kits,Circuit Examples,8051,Robots,micro Code,AT89c51, Programmer,IEEE 2010 embedded systems, embedded programming, PIC Micro projects, Microchip Programming, AVR tutorials, PIC Micro tutorials, ATMEL, Microcontrollers based systems, Microcontroller Projects, Embedded projects, Embedded designing in C, Microchip Lab, Embedded systems tips, DIY Electronics,Project Detail,onlinejob, Data Entry, no fee, no investment, part time, home based,recuirements,job,consultancy,helpline,maths,power,ultimate knowledge,prodigy,trichy,mobile
100% FAT LOSS TIPS Click Here!

Rectifier circuits

, Posted by ADMIN at 3:37 AM

Now we come to the most popular application of the diode: rectification. Simply defined, rectification is the conversion of alternating current (AC) to direct current (DC). This involves a device that only allows one-way flow of electrons. As we have seen, this is exactly what a semiconductor diode does. The simplest kind of rectifier circuit is the half-wave rectifier. It only allows one half of an AC waveform to pass through to the load. (Figure below)
Half-wave rectifier circuit.
For most power applications, half-wave rectification is insufficient for the task. The harmonic content of the rectifier's output waveform is very large and consequently difficult to filter. Furthermore, the AC power source only supplies power to the load one half every full cycle, meaning that half of its capacity is unused. Half-wave rectification is, however, a very simple way to reduce power to a resistive load. Some two-position lamp dimmer switches apply full AC power to the lamp filament for “full” brightness and then half-wave rectify it for a lesser light output. (Figure below)
Half-wave rectifier application: Two level lamp dimmer.
In the “Dim” switch position, the incandescent lamp receives approximately one-half the power it would normally receive operating on full-wave AC. Because the half-wave rectified power pulses far more rapidly than the filament has time to heat up and cool down, the lamp does not blink. Instead, its filament merely operates at a lesser temperature than normal, providing less light output. This principle of “pulsing” power rapidly to a slow-responding load device to control the electrical power sent to it is common in the world of industrial electronics. Since the controlling device (the diode, in this case) is either fully conducting or fully nonconducting at any given time, it dissipates little heat energy while controlling load power, making this method of power control very energy-efficient. This circuit is perhaps the crudest possible method of pulsing power to a load, but it suffices as a proof-of-concept application.
If we need to rectify AC power to obtain the full use of both half-cycles of the sine wave, a different rectifier circuit configuration must be used. Such a circuit is called a full-wave rectifier. One kind of full-wave rectifier, called the center-tap design, uses a transformer with a center-tapped secondary winding and two diodes, as in Figure below.
Full-wave rectifier, center-tapped design.
This circuit's operation is easily understood one half-cycle at a time. Consider the first half-cycle, when the source voltage polarity is positive (+) on top and negative (-) on bottom. At this time, only the top diode is conducting; the bottom diode is blocking current, and the load “sees” the first half of the sine wave, positive on top and negative on bottom. Only the top half of the transformer's secondary winding carries current during this half-cycle as in Figurebelow.
Full-wave center-tap rectifier: Top half of secondary winding conducts during positive half-cycle of input, delivering positive half-cycle to load..
During the next half-cycle, the AC polarity reverses. Now, the other diode and the other half of the transformer's secondary winding carry current while the portions of the circuit formerly carrying current during the last half-cycle sit idle. The load still “sees” half of a sine wave, of the same polarity as before: positive on top and negative on bottom. (Figure below)
Full-wave center-tap rectifier: During negative input half-cycle, bottom half of secondary winding conducts, delivering a positive half-cycle to the load.
One disadvantage of this full-wave rectifier design is the necessity of a transformer with a center-tapped secondary winding. If the circuit in question is one of high power, the size and expense of a suitable transformer is significant. Consequently, the center-tap rectifier design is only seen in low-power applications.
The full-wave center-tapped rectifier polarity at the load may be reversed by changing the direction of the diodes. Furthermore, the reversed diodes can be paralleled with an existing positive-output rectifier. The result is dual-polarity full-wave center-tapped rectifier in Figure below. Note that the connectivity of the diodes themselves is the same configuration as a bridge.
Dual polarity full-wave center tap rectifier
Another, more popular full-wave rectifier design exists, and it is built around a four-diode bridge configuration. For obvious reasons, this design is called a full-wave bridge. (Figure below)
Full-wave bridge rectifier.
Current directions for the full-wave bridge rectifier circuit are as shown in Figure below for positive half-cycle and Figure below for negative half-cycles of the AC source waveform. Note that regardless of the polarity of the input, the current flows in the same direction through the load. That is, the negative half-cycle of source is a positive half-cycle at the load. The current flow is through two diodes in series for both polarities. Thus, two diode drops of the source voltage are lost (0.7·2=1.4 V for Si) in the diodes. This is a disadvantage compared with a full-wave center-tap design. This disadvantage is only a problem in very low voltage power supplies.
Full-wave bridge rectifier: Electron flow for positive half-cycles.
Full-wave bridge rectifier: Electron flow for negative half=cycles.
Remembering the proper layout of diodes in a full-wave bridge rectifier circuit can often be frustrating to the new student of electronics. I've found that an alternative representation of this circuit is easier both to remember and to comprehend. It's the exact same circuit, except all diodes are drawn in a horizontal attitude, all “pointing” the same direction. (Figure below)
Alternative layout style for Full-wave bridge rectifier.
One advantage of remembering this layout for a bridge rectifier circuit is that it expands easily into a polyphase version in Figure below.
Three-phase full-wave bridge rectifier circuit.
Each three-phase line connects between a pair of diodes: one to route power to the positive (+) side of the load, and the other to route power to the negative (-) side of the load. Polyphase systems with more than three phases are easily accommodated into a bridge rectifier scheme. Take for instance the six-phase bridge rectifier circuit in Figure below.
Six-phase full-wave bridge rectifier circuit.
When polyphase AC is rectified, the phase-shifted pulses overlap each other to produce a DC output that is much “smoother” (has less AC content) than that produced by the rectification of single-phase AC. This is a decided advantage in high-power rectifier circuits, where the sheer physical size of filtering components would be prohibitive but low-noise DC power must be obtained. The diagram in Figure below shows the full-wave rectification of three-phase AC.
Three-phase AC and 3-phase full-wave rectifier output.
In any case of rectification -- single-phase or polyphase -- the amount of AC voltage mixed with the rectifier's DC output is called ripple voltage. In most cases, since “pure” DC is the desired goal, ripple voltage is undesirable. If the power levels are not too great, filtering networks may be employed to reduce the amount of ripple in the output voltage.
Sometimes, the method of rectification is referred to by counting the number of DC “pulses” output for every 360o of electrical “rotation.” A single-phase, half-wave rectifier circuit, then, would be called a 1-pulse rectifier, because it produces a single pulse during the time of one complete cycle (360o) of the AC waveform. A single-phase, full-wave rectifier (regardless of design, center-tap or bridge) would be called a 2-pulse rectifier, because it outputs two pulses of DC during one AC cycle's worth of time. A three-phase full-wave rectifier would be called a 6-pulse unit.
Modern electrical engineering convention further describes the function of a rectifier circuit by using a three-field notation of phasesways, and number ofpulses. A single-phase, half-wave rectifier circuit is given the somewhat cryptic designation of 1Ph1W1P (1 phase, 1 way, 1 pulse), meaning that the AC supply voltage is single-phase, that current on each phase of the AC supply lines moves in only one direction (way), and that there is a single pulse of DC produced for every 360o of electrical rotation. A single-phase, full-wave, center-tap rectifier circuit would be designated as 1Ph1W2P in this notational system: 1 phase, 1 way or direction of current in each winding half, and 2 pulses or output voltage per cycle. A single-phase, full-wave, bridge rectifier would be designated as 1Ph2W2P: the same as for the center-tap design, except current can go both ways through the AC lines instead of just one way. The three-phase bridge rectifier circuit shown earlier would be called a 3Ph2W6P rectifier.
Is it possible to obtain more pulses than twice the number of phases in a rectifier circuit? The answer to this question is yes: especially in polyphase circuits. Through the creative use of transformers, sets of full-wave rectifiers may be paralleled in such a way that more than six pulses of DC are produced for three phases of AC. A 30o phase shift is introduced from primary to secondary of a three-phase transformer when the winding configurations are not of the same type. In other words, a transformer connected either Y-Δ or Δ-Y will exhibit this 30o phase shift, while a transformer connected Y-Y or Δ-Δ will not. This phenomenon may be exploited by having one transformer connected Y-Y feed a bridge rectifier, and have another transformer connected Y-Δ feed a second bridge rectifier, then parallel the DC outputs of both rectifiers. (Figure below) Since the ripple voltage waveforms of the two rectifiers' outputs are phase-shifted 30o from one another, their superposition results in less ripple than either rectifier output considered separately: 12 pulses per 360o instead of just six:
Polyphase rectifier circuit: 3-phase 2-way 12-pulse (3Ph2W12P)
  • REVIEW:
  • Rectification is the conversion of alternating current (AC) to direct current (DC).
  • half-wave rectifier is a circuit that allows only one half-cycle of the AC voltage waveform to be applied to the load, resulting in one non-alternating polarity across it. The resulting DC delivered to the load “pulsates” significantly.
  • full-wave rectifier is a circuit that converts both half-cycles of the AC voltage waveform to an unbroken series of voltage pulses of the same polarity. The resulting DC delivered to the load doesn't “pulsate” as much.
  • Polyphase alternating current, when rectified, gives a much “smoother” DC waveform (less ripple voltage) than rectified single-phase AC.

Currently have 0 comments: